The FACCE-ERA-Net Plus project “Climate smart Agriculture on Organic Soils” (CAOS)

Bärbel Tiemeyer1 · Michel Bechtold2 · Kerstin Berglund3 · Örjan Berglund4 · Laura Breitsameter2 · Annette Freibauer3 · Rob Hendriks5 · Ide Hoving6 · Järveoja Järveoja7 · Tanko Kandel7 · Poul Erik Læsrøe8 · Martin Maddison9 · Ülo Mander10 · Merja Myllys11 · Arndt Piayda1 · Bernhard Osterburg1 · Kristiina Reginas12 · Norbert Röder3 · Jan van den Akker1

1Thünen Institute for ClimateSmart Agriculture, Braunschweig, Germany
2Institute for Rural Studies, Braunschweig, Germany
3University of Tartu, Institute of Ecology and Earth Sciences, Tartu, Estonia
4Natural Resources Institute, Jokioinen, Finland
5Swedish University of Agricultural Sciences, Department of Soil and Environment, Uppsala, Sweden
6Center for Land and Landscape Research, Wageningen, The Netherlands
7Aarhus University, Department of Agroecology, Tjele, Denmark

Farmed organic soils – greenhouse gas hotspots in Europe

Background
• Peatlands store a major share of the world’s soil organic carbon, but become strong greenhouse gas (GHG) sources when drained.
• Furthermore, drainage fosters soil degradation, land surface subsidence and water pollution.
• Current land use of organic soils in Europe is neither sustainable nor climate smart.

FIG. 1: Effects of active water management

Wet management systems – benefit from synergies
• Controlled drainage with active water management is a climate smart option for agricultural production on organic soils under current and future climatic conditions.
• Wet organic soils can be used as risk insurance in dry periods while reducing GHG emissions (Fig. 1).
• Wetness adapted crops with stable yields are needed to meet requirements for food, feed and bioenergy while being economically attractive.
• Proof by on farm experiments and historical evidence of successful wet management systems is required.

Study Sites


Project Aims & Tasks

Background
• Combining existing agro-economic data (Fig. 3 & 4) with soil quality (Fig. 5) and groundwater table measurements (Fig. 6) to identify historical evidence of climate smart soil and water management under diverse regional conditions.

Field experiments
• Field experiments with soil and water management testing different techniques of controlled drainage and subirrigation (e.g. Fig. 7):
  ➢ Greenhouse gas measurements with manual closed chambers (Fig. 8)
  ➢ Detailed analysis of hydrology, biomass and soils
  ➢ Trafficability

Biogeochemical and economic data analysis
• Political, agronomic and socio-economic analyses: identification of barriers and incentives for wet management
• Determination of quantity and quality analysis of the harvested biomass used for food, feed or energy purposes.
• Integration of process-based water dynamic and crop growth models, statistical models of greenhouse gas mitigation and water quality and economic models to synthesize results and to evaluate the adaptation potential under climate change scenarios.
• Bi-directional involvement of stakeholders and practitioners (interviews, stakeholder workshops) to facilitate knowledge exchange within and across countries.

FIG. 3: Grazing on wet organic soils.

FIG. 4: Grassland management on organic soils.

FIG. 5: Profile of a peat soil degraded by tile drainage.

FIG. 6: Groundwater level measurements in a wet grassland on bog peat.

FIG. 7: Ditch management by adjustable weirs.

FIG. 8: GHG measurements with manual closed chambers.